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Data Converters 



Types of ADCs
• Flash
• Pipelined
• Folded
• Serial

– Single-slope
– Dual-slope

• Interpolating
• Iterative  (Algorithmic, Cyclic)
• Successive Approximation (SAR)
• Oversampled (Delta-Sigma)
• Charge Redistribution
• Several others

Review from Last Time:



Metastability
VOUT

VIN

High-gain amplifier

Bistable amplifier

for some input values, output may not be at a level that is predictably interpreted by subsequent 
logic circuits

this range can be very small if the gain is large enough

Bistable amplifier will always make a decision

For any fixed finite time T, there is always a small nonzero probability that the decision will not 
be made in time T

This probability can be made very low through proper circuit design techniques but never made 
to be zero

Review from Last Time:



Metastability

A comparator is said to be in a metastable state if the output of the comparator can 
not be interpreted by subsequent digital logic

For any finite time T, any comparator that has been “asked” to make a binary 
decision has a finite nonzero probability P that subsequent logic will not correctly 
interpret the output In the interval of length T 

This probability can be made very low through proper circuit design techniques 
but never made to be zero

Metastability in ADCs caused by comparators 

Metastability in ADCs caused by transient conditions in logic circuits

Due to asynchronous operation of the ADC

Can be eliminated by circuit modifications that make operation synchronous 
or by appropriate timing of asynshronous operation

Review from Last Time:



Metastability
Flash ADC

Metastability can never be eliminated in an ADC, its effects can just be reduced 
to a level that results in an acceptably low probability of causing  an 
unacceptable outcome

Pipelined

Iterative  (Algorithmic, Cyclic)

Single-
slope

Serial
Folded

Interpolating

Dual-slope

Charge Redistribution

Oversampled (Delta-Sigma)

Successive Approximation (SAR)

Review from Last Time:



Types of DACs
• Current steering
• R-String
• Ladder (R-2R)
• Parallel
• Pipelined
• Subranging
• Charge Redistribution
• Algorithmic
• Serial
• Subranging
• Oversampled (Delta-Sigma)
• Several others



Types of DACs
R-string DAC



Types of DACs
Interpolating DAC
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Types of DACs
Interpolating DAC
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Types of DACs
Current-steering DAC
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Types of DACs
Ladder DAC (R-2R)



Types of DACs
Charge-Redistribution  DAC

k k-1

CC =
2



Observation:  Most of the ADCs and DACs use switches

Switches used in DACs and ADCs  DAC

Usually switches are simple a single MOS transistor or two MOS transistors



Engineering Issues for Using Data Converters

1. Inherent with Data Conversion Process
• Amplitude Quantization
• Time Quantization
(Present even with Ideal Data Converters)

2. Nonideal Components
• Uneven steps
• Offsets
• Gain errors
• Response Time
• Noise
(Present to some degree in all physical Data Converters)

How do these issues ultimately impact performance ?



Engineering Issues for Using Data Converters

Inherent with Data Conversion Process

• Time Quantization

• Amplitude Quantization

How do these issues ultimately impact performance ?



Time Quantization

Sampling Theorem
• Aliasing
• Anti-aliasing Filters
• Analog Signal Reconstruction



Time Quantization
For convenience, consider a sinusoidal signal

1f=
T

Consider a positive-edge triggered sampling clock signal

CLK

CLK

1f =
T



Time Quantization

Time-quantized samples of signal



Time Quantization

Time-quantized samples of signal

Once time-quantized, the samples become a sequence of real numbers
and the time axis need no longer be specified (the time where the first sample was taken 
and the clock period may be recorded as real numbers as well)

[V1,V2,……Vm]



Time Quantization

Time-quantized samples of signal

All information about original signal between the sample points is lost when the 
signal is sampled



Time Quantization

Time-quantized samples of signal

All information about original signal between the sample points is lost when the 
signal is sampled

How often must a signal be sampled so that enough information about the 
original signal is available in the samples so that the samples can be used to 
represent the original signal ?



Time Quantization

more samples:



Time Quantization

less samples:



Time Quantization

even less samples:



Time Quantization

How often must a signal be sampled so that enough information about the 
original signal is available in the samples so that the samples can be used to 
represent the original signal ?



Time Quantization

How often must a signal be sampled so that enough information about the 
original signal is available in the samples so that the samples can be used to 
represent the original signal ?

t

θT/(2π)

VM

( ) ( )M
f t =V sin ωt-θ

If the sampling times are known, there are two unknowns in this equation, VM and θ.

So two samples during this period that provide two non-zero values of f(t) 
will provide sufficient information to completely recreate the signal f(t)! 



Time Quantization
How often must a signal be sampled so that enough information about the 
original signal is available in the samples so that the samples can be used to 
represent the original signal ?

The Sampling Theorem 

An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency is greater than twice the 
signal bandwidth.

Sometimes termed Shannon’s sampling theorem or the Nyquist-Shannon sampling theorem



Time Quantization
How often must a signal be sampled so that enough information about the 
original signal is available in the samples so that the samples can be used to 
represent the original signal ?

The Sampling Theorem 

An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency is greater than twice the 
signal bandwidth.

Sometimes termed Shannon’s sampling theorem or the Nyquist-Shannon sampling theorem

This is a key theorem and many  existing communication standards and 
communication systems depend heavily on this property

This theorem often provides a lower bound for clock frequency of ADCs



Time Quantization

Sometimes termed Shannon’s sampling theorem or the Nyquist-Shannon sampling theorem

The terms “band limited” and “signal bandwidth” require considerable 
mathematical rigor to be precise but an intuitive feel for the sampling theorem 
and the ability to effectively use the sampling theorem can be developed without 
all of that rigor

The rigorous part:

The Fourier Transform, Y(ω) of a function y(t) is defined as

( ) ( )1 -jωtY ω y t e dt
2 tπ

∞

=−∞

= ∫

If y(t) is well-behaved (and most functions of interest are), then y(t) can 
be obtained from Y(ω) from the expression

( ) ( )1 jωty t Y ω e dω
2 ωπ

∞

=−∞

= ∫



Time Quantization
The rigorous part:

( ) ( )1 -jωtY ω y t e dt
2 tπ

∞

=−∞

= ∫

Observe the Fourier Transform is very closely related to the Laplace
Transform for many (almost all where data converters are used) 
functions of interest,  and they are related by the expression

( ) ( )Y ω
s j

Y s
ω=

=

Y(ω) is generally a complex quantity



Time Quantization
The rigorous part:

Signal Bandwidth Definition 

If the Fourier Transform of the function y(t) exists and if  B is the smallest finite 
real number for which Y(ω)=0 for all ω > B, then B is the Signal Bandwidth of y(t)

Band-limited Definition 

If the Fourier Transform of a function y(t) exists, then y(t) is band-limited if 
there exists a finite real number H such that Y(ω)=0 for all ω>H.

If the signal y(t) is periodic, the sampling theorem can also be given and the 
concepts of band-limits and signal bandwidth may be more intuitive.  This will 
be discussed later.



Time Quantization
How often must a signal be sampled so that enough information about the 
original signal is available in the samples so that the samples can be used to 
represent the original signal ?

The Sampling Theorem 
An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency is greater than twice the 
signal bandwidth.

• the term “band limited” is closely related to term “signal bandwidth”

• the term “Nyquist Rate” in reference to a bandlimited signal 
is the minimum sampling frequency that can be used if the entire
signal can be reconstructed from the samples

Sometimes termed Shannon’s sampling theorem or the Nyquist-Shannon sampling theorem

fNYQ=2B



Time Quantization
The Sampling Theorem 

An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency is greater than twice the 
signal bandwidth.

Alternatively

An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency exceeds the Nyquist Rate.



Time Quantization
The Sampling Theorem 

An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency exceeds the Nyquist Rate.

Practically, signals are often sampled at frequency that is just a little bit higher 
than the Nyquist rate though there are some applications where the sampling is 
done at a much higher frequency (maybe with minimal benefit)

The theorem as stated only indicates sufficient information is available in the 
samples if the criteria are met to reconstruct the original continuous-time signal, 
nothing is said about how this can be practically accomplished.



Time Quantization

Approximately 3 times fNYQ

Approximately 6 times fNYQ
Slightly above fNYQ

Below  fNYQ



Time Quantization
The Sampling Theorem 

An exact reconstruction of a continuous-time signal from 
its samples can be obtained if the signal is band limited 
and the sampling frequency exceeds the the Nyquist
Rate.

What happens if the requirements for the sampling theorem are not met?

How can a continuous-time signal be practically reconstructed from the samples 
if the hypothesis of the sampling theorem was satisfied when the samples were 
taken?  



Time Quantization
What happens if the requirements for the sampling theorem are not met?

Example:  Consider a signal that is of frequency 3/4 fCLK
Signal violates the hypothesis of the sampling theorem, it is higher in frequency than ½ fCLK

Sampled output 
sequence:



Time Quantization
What happens if the requirements for the sampling theorem are not met?

Example:  Consider a signal that is of frequency 1/4 fCLK - assume fCLK same as before
Signal violates the hypothesis of the sampling theorem, it is higher in frequency than ½ fCLK

Sampled output 
sequence:



Time Quantization
What happens if the requirements for the sampling theorem are not met?

Example:

Output sampled sequences are identical! 

fSIG=3/4 fCLK fSIG=1/4 fCLK



Time Quantization
What happens if the requirements for the sampling theorem are not met?

Example:
fSIG=3/4 fCLK fSIG=1/4 fCLK



Time Quantization
What happens if the requirements for the sampling theorem are not met?

Example:

fSIG=3/4 fCLK fSIG=1/4 fCLK

Since two different signals have same sampled sequence, 
can not uniquely reconstruct the signal from the samples



Time Quantization
What happens if the requirements for the sampling theorem are not met?

Since two different signals have same sampled sequence, can not 
uniquely reconstruct the signal from the samples

This makes the samples of a signal that was at a frequency above the 
Nyquist Rate look like those of a signal that meets the Nyquist Rate requirements

The creation of samples that appear to be of a lower frequency is termed 
aliasing.

Aliasing will occur if signals are sampled with a clock of frequency  less than  
the Nyquist Rate for the signal. 


